WATTE

IA Audio In Practice

Internet Appliance Audio in Practice

Jon Watte
Be, Incorporated
Menlo Park, CA 94025, USA

This presentation will outline some of the issues associated with implementing audio functionality on current and near-future connected appliances. A case study is made of the BeIA Internet appliance operating system. Topics include hardware/software balance, systems programming challenges, and user experience.

APPLICATIONS OF AUDIO IN INTERNET APPLIANCES

Building and shipping a successful operating system for Internet Appliances requires a high level of effort, sweat, attention to detail and hard compromise. Not only does it have to be a product good enough to put a brand name on, but cheap enough to sell to consumers.

Two audio-enabled product efforts make special sense in a world where Internet access is as available to your refrigerator as to your home Personal Computer. These are, for lack of better words, the “Internet Terminal” and the “Home Audio Center.”

Internet Terminal

Some early entrants into the Internet Terminal space tried to simply put an Internet browser in a box, and sell that as a dumbed-down, simple version of the PC for the poor or PC-phobic. However, it turns out that the people who adopted these devices early on were people who already own a PC and needed a second screen for relieving web surfing congestion in the house. Furthermore, these sophisticated users already knew that the web was full of song and dance (or what passes for it over a narrowband phone line, anyway). When these early devices failed to deliver streaming video or animated advertising with talking frogs, the devices were quickly put to the side and forgotten.

It appears that the next wave of internet appliances in this “Internet Terminal” category will have a better chance, having learned the lesson that, to provide a compelling web surfing experience, you have to deliver all of the web.

BeIA is poised to enable this second wave of devices, because it natively supports a number of important web technologies. Closest related to the audience of this paper are: RealPlayer G2 (version 8.0), MP3
 streaming audio, Sun’s Java technology with audio support, and Macromedia Flash animations.

A typical embodiment of this product is the e Villa Network Entertainment Center announced at this year’s Consumer Electronics Show in Las Vegas by Sony[1]. In addition to a modem and Ethernet connection (to enable the device to receive broadband content in a broadband enabled household) this device features a large portrait-mode display, a Memory Stick slot for storing pictures and music, and USB connectors for removable storage.

Home Audio Center

The e Villa is a do-everything box designed to put most of the web in your kitchen or living room as a second screen at an affordable price. Another thrust is the “applianceification” of previous functions of the home PC, such as encoding, storing and playing back music in the MP3 format.

Small, compact MP3 players with about an hour’s worth of storage have been available in the market for a while, making consumers aware of the benefits of electronic formats over the previous favorite: cassette tape. Just as some users have large cassette libraries and tape decks in their component stereo systems, a new market for MP3 jukebox devices that fit on your stereo shelf is thought to be forming[2].

The Home Audio Reference Platform (HARP) is a design developed by Be to show the capabilities of a well integrated such stereo component. Not only does it allow you to extract, encode, store and play back music in the popular MP3 format, but it also allows you to easily search and retrieve individual songs, albums, or play lists; record music to regular CD or MP3 CD for listening in the car or in the office. Last, it allows you to purchase and download new music (or cover art for the music you already have, suitable for display on a TV) over the Internet.

EXAMPLE HARDWARE

It is useful to examine the capabilities of the hardware that Internet appliances are being built around. During my work at Be, there have been three basic platforms that kept recurring and seem to enjoy some amount of adoption among ODMs (Original Device Manufacturers).

NSC Geode

[image: image1.wmf]T

able 2: The Crusoe Reference Platform

Chipset

CPU/North Bridge; ALI

1535 South Bridge

AC

-

97 controller

32 streams; linear SRC

Graphics

SMI LynxEM+ (PCI, On

-

chip Frame Buffer)

Memory Bus

66

-

133 MHz (typ 100 MHz)

CPU

400 MHz CPU w/MMX

Microarchitecture

Code Morphing, VLIW

Cache

96 kB L1

National Semiconductor has developed a low-cost platform for internet appliances, based on the Cyrix 686 core they acquired a few years back[3]. This platform is popular because of its low cost and relatively low power consumption, and provides the same level of performance as found in home PCs still in use.

Transmeta Crusoe

[image: image2.wmf]Table 4: BeIA Sample Rate Converters

The CPU cost was measured on a 466 MHz Celeron system. The

17

th

order interpolator makes heavy use of the pipelined f

loating

-

point unit, and its CPU cost will not scale well to a lower

-

cost

platform.

Converter

CPU Cost

Noise Level

0

th

 order

0.2%

-

20 dB

1

st

 order

0.5%

-

40 dB

17

th

 order

1.6%

-

90 dB

Transmeta has recently made an entrance into the internet appliance arena with their x86 compatible CPUs based on a VLIW core and special “code morphing” firmware to translate and execute x86 instructions. Transmeta claims lower power consumption for the same level of performance as compared to Intel CPUs[4], and their CPUs perform fairly well.

Intel Celeron/i810e

Intel has positioned the Celeron as the workhorse CPU of value-priced personal computers, which are a step above Internet appliances in price and positioning[5]. However, devices that need substantial horsepower, such as for encoding MP3 files, benefit from these relatively high-power CPUs and may motivate paying the price (in dollars).

[image: image3.wmf]

#include <OS.h>

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

#define ITERS 10000 // number of samples

void main()

{

bigtime_t total = 0, worst = 0;

//

set ourselves up as a low

-

latency thread

set_thread_priority(find_thread(NULL), 120

);

for (int ix=0; ix<ITERS; ix++)

{

//

wake up some time in the future

bigtime_t then = system_time()+10000LL+(rand()&0x7fff);

snooze_until(then, B_SYSTEM_TIMEBASE);

//

compare when we actually woke up to when we wanted to

bigtime_t now = sys

tem_time();

assert(now

-

then >= 0LL);

//

record statistics on accuracy

if (now

-

then > worst) worst = now

-

then;

total += now

-

then;

}

//

report results

printf("max latency: %Ld us; avg latency: %Ld us

\

n", worst, total/ITERS);

}

Listing 1: Measuri

ng Interrupt Latency on BeIA

system_time() and snooze_until(), implemented by the BeIA kernel scheduler, work using

CPU performance timers providing microsecond resolution.

AC-97 Audio vs 24/96

Intel has driven a standard for consumer-grade ADC/DAC chips called AC-97. This standard specifies some levels of functionality, in addition to a physical pin-out and low-speed serial bus to interchange digital data with a digital host controller. Economies of scale have resulted in a large number of vendors supplying codecs fitting this format, and a large range of cost vs quality trade-offs are available, with the caveat that these codecs are most at home in 44.1 kHz or 48 kHz systems producing stereo or quadraphonic 16 bit resolution audio.

For higher bit resolutions and sampling rates, we have found two solutions to be acceptable to vendors: Envy24 from IC Ensemble (now owned by VIA Technologies), and a solution based on the Motorola 56k DSP with layout and software licensed by Echo Designs. These solutions can support up to 8 channels of 24 bit, 96 kHz audio in and out and are supported by the BeIA operating system.

DSP Based Platforms

Some vendors may choose to use a cheaper platform for their general-purpose interface needs and offload heavy audio and video processing on custom-programmed DSP hardware. Because these solutions are diverse and specific to each vendor, I will not go into details here. Suffice to say that the needs of these solutions have to be anticipated by the general-purpose operating system so that release of the system to the market is not held up by working around architectural problems.

HARDWARE FACTORS

There are several factors which determine how the choice of platform may affect the audio capabilities of an internet appliance. Some of the more important factors are interrupt latency, scheduling latency, processing power, storage space and the audio interface hardware. This section discusses the impact of these factors on BeIA, with some specific measurements taken under real-world operating conditions.

Interrupt Latency

Internet appliances typically use a single general purpose CPU for all their needs. This means that many different requests are made of the CPU to process user interface, video, audio, networking and other information based on the system user’s actions. In BeIA, like most operating systems running on a single CPU, a device may temporarily monopolize the system by turning off interrupts, in effect preventing the current task from being interrupted and other tasks from being scheduled. The maximum length of time during which interrupts are turned off by any device on the system is known as that system’s interrupt latency. Long interrupt latencies may cause such artifacts as audio drop-outs or stuttering, jerky cursor movement on the screen, and even network disconnection.

The BeIA driver development policy is to defer as much work as possible to user-mode threads or kernel-mode deferred procedure calls. This allows it to run with interrupts turned off only briefly. The goal is to not have any driver turn off interrupts for longer than 50 µs on a current “desktop” system, here most closely resembling the Celeron reference platform. By and large, we meet this goal, although some third party modem device drivers may incorrectly disable interrupts for extended periods of time when initializing or shutting down the device. Top measured interrupt latency during heavy run-time system load is 80 µs on the Celeron system, 190 µs on the Geode system, and 1000 µs on the Crusoe system
.

The higher number for Geode makes sense as it is a slower CPU and thus takes longer to perform the actions needed while interrupts are disabled. Occasionally spending a whole millisecond with interrupts turned off on the Crusoe is surprising, because that CPU otherwise feels fairly snappy. I believe that the code morphing firmware might have something to do with that number; conceivably it could internally read a fair chunk of x86 code at a time and translate it all in one go, then execute the translated code. Such translation would naturally stop and interrupt the visible x86 instruction stream at essentially random points in the code, resulting in these large worst-case numbers.

Some solutions based on the Geode or Celeron platforms exhibit a worst-case behavior similar to Crusoe. This behavior is traceable to the execution of code in SMM (System Management Mode). SMM is a mode where the BIOS of the system can take over the machine and run “below” ring 0, effectively masking out all other system activities. The Geode additionally makes novel use of SMM to emulate well-known hardware devices such as a SoundBlaster 16 or a serial port mouse, but the use of SMM can be extensively reduced by writing custom drivers for the actual hardware, rather than rely on the “virtual” devices so emulated.
Scheduling

When many demands are made of a general-purpose CPU all at once, some mechanism needs to determine which task gets to execute first. The process of selecting and giving control to one of many tasks is known as scheduling, and the subsystem of the kernel that performs this task is known as the scheduler.

The performance of the scheduler is crucial to performing real-time media tasks using general-purpose hardware in a general-purpose operating system. Much like interrupt latency can affect how responsive a system will be to the needs of hardware devices, the scheduler affects how responsive the system is to the needs of the user (or at least, the needs of the various tasks initiated by the user).

The BeIA scheduler is designed to allow for flexible control of where the system spends its cycles. In brief, here is how it works:

Selection of a new thread to run happens whenever a device interrupt tells the kernel that a previously blocking thread may now be ready to run, or when a thread explicitly requests it, or when the currently running thread has been running for 3 ms.

Each running thread on the system has a priority, which is usually in the range 5-20, or 100-120. The lower-priority threads are said to be “normal” threads, and the high-priority threads are said to be “real-time” threads, although the flavor of real-time is more of “predictable latency” than of what’s traditionally known as “hard real-time.”

Threads of the same priority are bundled together into a priority “stratum.” The scheduler selects a priority stratum from which to execute the next thread, and within each stratum, the threads that are ready to run are chosen in round-robin fashion.

If any real-time stratum has a thread which is ready to run, the highest such real-time stratum is always chosen. This allows the systems developer to set hard priorities between different kinds of processing, such as (in order) MIDI (115), audio (110), mouse cursor (105) and networking (100).

[image: image4.wmf]Table 1: The Geode Reference Platfor

m

Chipset

CPU; North Bridge; South

Bridge

AC

-

97 controller

Single stream

Graphics

North Bridge

Memory Bus

33

-

100 MHz (typ 66 MHz)

Shared

CPU

266 MHz Cyrix CPU

w/MMX

Microarchitecture

Integer Pipeline

Cache

16 kB L1

If no real-time thread currently wishes to run, the scheduler selects a non-real-time stratum with a thread ready to run by a stochastic process (similar to lottery scheduling) where a stratum with priority N has twice the chance of being selected as a stratum with priority N-1.

The end result is a system where latency-critical processes can be selected to run in strict priority order, while less latency critical threads can be grouped so that they will take no more than some known percentage of the available CPU cycles over time. Incidentally, my measurements of interrupt latency are actually measurements of the scheduling latency of a thread of priority 120; the way the BeIA scheduler works, this method results in only a slight overestimate. See listing 1.

Processing Power

The three platforms discussed have differences in processing power that span an order of magnitude or more. The choice for where to use this processing power depends on the design goals of the appliance being built. Sometimes, a simple hardware change such as choosing a codec that can run at 44.1 kHz may go a long way towards mitigating an otherwise very tough position.

Sample rate conversion is an interesting example. BeIA offers several levels of sample rate conversion; of which the three listed in table 4 are most useful.

Initially it may seem that the –90 dB noise level of the high-order converter is not sufficient for a high-quality audio appliance such as the Home Audio Reference Platform. However, this number is a worst-case measurement and real-world performance has shown to be better. In addition, sampling rate conversion is only used for material encoded at “odd” sampling rates such as 32 kHz or 22.5 kHz, which typically means it has encoding artifacts or other quality loss which exceeds the conversion noise of the sampling rate converter. The value of 17th order was chosen to run well within the cache of the Celeron platform, and significant improvements in quality would mean disproportionately larger increases in CPU usage to the point where a dedicated DSP would be necessary
[6].

Other cases where processing power affects quality include decoding of compressed audio, such as the ever-popular “MP3” streaming and stored audio format. A best-quality, floating-point decoder for the MP3 format will use close to 100% of a low-cost reference platform (even more if the memory bus is run at a slow speed) and thus might be considered overkill in a device designed to simultaneously perform other functions.

Storage Space

Unless the device is intended to store lots of information, such as the Home Audio Reference Platform device, a hard disk is out of reach for the budget-minded Internet appliance builder. Instead, cheaper flash memory storage is often used to store the persistent operating system information, and transient data (cached web pages, parameters, etc) is stored in RAM, from where it is purged when the RAM is needed elsewhere.

The minimum effective space needed for a full BeIA install, including web browser, drivers, user interface, support for popular internet formats such as MP3, RealMedia, Macromedia Flash and Java, is 8 MB of persistent flash and 32 MB of RAM. Given these constraints, the audio subsystem may also be made to compromise a little.

[image: image5.wmf]Table 3: The Celeron Reference Platform

Chipset

CPU; i810e North Bridge;

i801 South Bridge

AC

-

97 controller

Single stream

Graphics

North Bridge

Memory Bus

66

-

133 MHz (typ 100 MHz)

Shared

CPU

600 MHz P6 CPU w/MMX

Microarchitecture

Deep Pipelining, 3

-

way

Superscalar

Cache

32 kB L1; 128 kB L2

To take advantage of the low latencies available in the BeIA media architecture, user interface designers add feedback sounds to various user interface elements such as button clicks, page loads, etc. However, as flash memory storage is very slow and very limited, the benefits of low latency audio are lost if the interface had to wait for sound effects to be located, loaded and decompressed from flash disk every time they are needed. Instead, BeIA pre-loads and pre-decodes often-used feedback sounds into memory, to minimize the system impact of using sounds. The limitations on available RAM mean that feedback sounds are typically stored in a compressed format such as 4:1 ADPCM or MP3 in flash memory, and only played back at 22 kHz mono. Whereas this is a design decision which each ODM can make on his own; these parameters are what most of them end up using.

Audio Interface Hardware

The actual audio interface hardware used will affect the quality of sound coming out of the device. Adding $25 or more per unit to provide 24 bit 96 kHz audio output capability[7] may make perfect sense when building a device that’s all about high-quality audio. However, when the audio quality of a device is considered more of a “nice bonus” than a major design point, careful attention to detail may still make the best of the situation. If 95% of all source material is going to be encoded at 44.1 kHz, such as MP3 files available for streaming on the net today, choosing a codec which can natively play that frequency in addition to the AC-97 base requirement of a 48 kHz will make a lot of sense. This is especially true if you are running on a system with limited available CPU cycles, where the 1st order sampling rate converter is all you can afford in software.

Even hardware sampling rate conversion can be tricky, however. Many consumer-grade audio interface solutions claim to provide hardware sampling rate conversion, and while the claim is true, they do it using linear interpolation (similar to the 1st order software converter). In the worst case, the design may only be capable of running at 48 kHz base output rate, and all 44.1 kHz content will have to go through a linear interpolator, either in software or hardware.

Last, the built-in speakers (or “line out” connector) of the device may not be the only place where audio exits the system. The Home Audio Reference Platform includes not only CD audio extraction and MP3 encoding capabilities, but it can also decode MP3 and other audio formats to use the built-in CD recorder to create “compilation tape” CDs with the user’s favorite selections. Additionally, it can create “MP3 CDs,” an informal format consisting of MP3 files stored in a ISO 9660 file system, readable by many newer DVD players in addition to PCs and some CD players. It is important for the encoding and successive decoding of audio to be as transparent a process as possible; using higher bit rates for storage on the internal hard disk and high-quality software codecs in a unit designed for this task facilitates this. Further, the operating system used in the unit must be designed to be able to sustain the data transfer to a CD burner unit without creating “coasters”
 and while keeping the rest of the functionality of the unit (listening to and serving up MP3 music, and downloading new music from the Internet) available.

USING A GENERAL-PURPOSE OPERATING SYSTEM FOR REAL-TIME AUDIO

Traditionally, any real-time process has required the loving attention of a dedicated real-time operating system as well as specialized digital signal processors. Using general-purpose software or hardware for such processes was simply not economically feasible. With today’s faster general purpose hardware and more capable general purpose software, especially with the careful attention to media detail as found in BeIA, ODMs are finding it faster and cheaper to get to market using these general-purpose solutions rather than relying on the slow and inflexible development environment typical of custom hardware.

Benefits of providing Real-Time response

Computers have been able to process digital audio for a long time. When the first SoundBlaster ISA add-in card was released, computer gaming started driving the audio capabilities of low-cost computer hardware. It seems that equilibrium was reached at the 16-bit, 44.1 kHz quality level about five years ago. Now, most new sound hardware designs claim quadraphonic or even 5.1 output, 3D positional audio and a large number of hardware accelerated MIDI channels rather than driving towards the next quality step of 24 bits, 96 kHz.

There is, however, another less tangible quality aspect of audio in interactive systems: how interactive it actually feels. What good is a really awesomely recorded and produced sound effect, if it feels like it is played “a second after the event” rather than as an integral part of the event that triggers the sound? To enable responsive, interactive sound, the goal of an Internet appliance operating system (be it general-purpose or not) must be to provide sufficiently low latencies to allow for that immediate tactile feedback.

In addition, the advent of voice-over-IP telecommunications and video conferencing adds to the latency requirements. With an already unpredictable Internet connecting two devices and adding latency to a two-way conversation, it would add insult to injury if the hardware used at the ends of the connection each added an amount of latency similar to that of the Internet[8].

Benefits of using a General-Purpose OS

Developing with DSP hardware may make life easier when you need to run a lengthy convolution or frequency-domain based audio codec. It is to be avoided if the device you are building is intended to have any kind of larger interactive scope, such as a color LCD screen, maybe even with a mouse and an open-ended interface to the Internet. The development of the appropriate user interface to harness the power of the technology inside the box, and leverage the additional power of a connected device, easily dwarfs the time it takes to implement standard signal processing algorithms.

Developing your Internet appliance with a general-purpose operating system will allow you to use familiar general-purpose tools (such as HTML text, PNG graphics and JavaScript control) for the user interface. There is danger of poor audio quality if the general-purpose aspect of your OS gets in the way of your required real-time response; the BeIA audio architecture is specifically designed to avoid that danger.

Audio Architecture

The BeIA audio architecture consists of four components: Device driver, Device arbiter, User-level device access, and User-level format transcoding.

At the bottom layer, BeIA needs a device driver for the native sound hardware of the platform. For many popular hardware choices, drivers are already written and available to ODMs. For specialized needs, Be will develop a driver under a special license with an ODM, or provide API documentation, SDK and tools for the ODM to develop the driver independently.

The BeIA audio device driver model uses a combination of the “SoundBlaster” assumption of a single, looping DMA buffer and exchanging data in chunks of a settable, predictable size per transaction. This leads to ease of implementation for the driver writer, while allowing for predictable latency in the upper software layers. BeIA takes care to avoid unnecessary copying of data into or out of buffers; for most hardware available today, the device directly plays the output of the software mixer and sample rate converter, leaving no extra copy step. Because there is no re-buffering necessary at the driver level, minimal time is spent executing with interrupts turned off, leaving the lion’s share of processing to upper-layer threads.

Physically, a sound driver under BeIA is a kernel module which automatically recognizes the device it is written to handle using PCI, ISA or USB plug-and-play, and plugs into the overall kernel audio driver called, for historical reasons, “gamedriver”. The plug-in is responsible for streaming some number of equal-sized chunks of audio to the physical output device and periodically reporting back to the gamedriver how far it has played since last time. The gamedriver then uses this information in aggregate to inform upper-layer clients of timing information, which may, depending on hardware capabilities, be up to sample accurate.

The sound device arbiter ensures that any user process that wants access to the sound device gets it. As more than one process may wish to access the device at the same time (say, to play a user interface feedback sound, a sound effect in a Macromedia Flash animation, and a background streaming song in MP3 format at the same time) the arbiter uses software sample rate conversion and mixing in the case where the hardware cannot provide these services. The arbiter also provides extra copies of input data if more than one client wishes to record audio at the same time (although the likelihood of this happening has so far been small).

Physically, the sound arbiter lives as a separate process called the “snd_server” which runs as a regular user process using soft real-time priority threads. In addition to opening and configuring the available sound device(s), the snd_server also manages shared memory used for audio buffers, pre-loads and plays user interface feedback sounds, and serves as a repository and registry of available sound configuration parameters, such as overall system volume.

The user-level sound device access API consists of a simple C++ class that is a standard part of the BeIA and BeOS APIs. A BSoundPlayer class object is instantiated with the desired sound format parameters (bit depth, frame rate, number of channels) and takes care of connecting to the sound device arbiter. When the user indicates that he wishes to start playing audio, the BSoundPlayer object will repeatedly call a callback function of the user’s choice until the stream is stopped. The number of frames requested during each callback is settable by the user, down to some minimum enforced by the arbiter (and in the end, the device itself). We have found 512 frame chunks (11.6 ms worth of audio at 44.1 kHz) to be an ideal trade-off between processing overhead and low latency on low-cost devices; faster devices can use smaller chunks should they need lower presentation latencies. Because of the software sample rate conversion and mixing, the total latency from the time the user’s callback is called until the data actually hits the digital-to-analog converter is two full buffers’ worth of audio, or about 23 milliseconds at 44.1 kHz.

The callback function runs at a high “soft real-time” priority, and it is thus up to the client program to make sure no more time than necessary is spent inside the callback function.

Last, the interface for en- or decoding audio under BeIA is very similar to the interface under BeOS
. A function listing available formats is called to find the best codec for a given format (or determine that the system cannot handle the format); another call is made to instantiate an en- or decoder object for the format in question, and the user is then free to start pumping data through this object. There are two ways of doing this: either as part of the BSoundPlayer callback function (which runs at soft real-time priority) or as part of a separate thread running at lower priority, feeding a FIFO which feeds the BSoundPlayer object. BeIA provides both blocking and non-blocking synchronization primitives to implement such a FIFO efficiently.

The two main streaming audio players supplied with BeIA (the “Media Bar” by Be and the “RealPlayer” by Real Networks) take the second approach to avoid the possibility of a high-load stream overloading the CPU and eating all cycles at soft real-time priority leaving nothing over to updating the user interface and interacting with the user
. The decoder threads runs at priority 17 while the user interface threads run at priority 15. This means that, over time, decoding audio will use no more than 80% of available CPU cycles, leaving 20% as an emergency reserve to always run the user interface, should there be contention.

HOT SPOTS

During the development of BeIA, certain areas of the audio subsystem turned out to be especially troublesome, leading to performance vs. quality trade-offs. Some of these are described below.

Software Mixer

The high quality version of the BeIA sound subsystem uses floating-point numbers for its native internal representation of PCM samples, and only truncate to the native hardware bit depth when actually playing the data
. On low-cost devices, paying a premium for floating-point math does not make sense, and fixed-point code replaces it. To avoid internal truncation in intermediate steps, the software mixer and sample rate converter uses a 32-bit accumulator and intermediate storage, using MMX instructions to expand incoming 16-bit data and saturate to outgoing 16-bit data.

Sample Rate Conversion

Table 4 lists the quality level and CPU cost (on a 466 MHz Celeron) of various sample rate converter implementations. On the lowest-cost platforms, even the first-order converter (linear interpolation) was considered too expensive until the resampling core had been converted to hand-crafted MMX assembly, and the difference in sound quality well demonstrated to the product managers.

Luckily, sampling rate conversion on these devices only has to happen to material that arrives over the network, and thus is already encoded using a lossy mechanism. Further, only material encoded at (typically) 32 kHz or 22.5 kHz (or lower, in the case of Java audio) needs conversion, so the limiting factor of sound quality is not necessarily the worst-case noise level behavior of the linear interpolator.

MP3 Decode

As mentioned above, a high-quality MP3 decoder uses too much CPU power to be viable on a low-cost general-purpose system. The solution for BeIA is to re-code the MP3 decoder using fixed-point MMX instructions with saturation, which brings the system load to a more manageable 35%. The trade-off is that the output of the fixed-point decoder is only accurate to about 14 bits for 16 bit signals. Some degenerate input signals cause even more distortion.

Here is where the advanced microarchitecture of the Celeron really shines. With a usefully sized L1 and L2 cache, three-way superscalar execution units and deep pipelining, a Celeron CPU may outperform a more traditional CPU clocked at the same speed by up to an order of magnitude on certain well-optimized DSP code!

Similarly, BeIA can encode MP3 files from raw PCM audio at a rate of about 10x nominal speed running on the Celeron reference platform with our custom MP3 encoder; but no ODM has yet found the right mix of cost and performance to put MP3 encoding low-cost general-purpose appliance.

OTHER SOFTWARE NEEDS

Hardware and low-level systems software is not enough to deliver a compelling device to increasingly distinguishing consumers. In order to serve the needs of ODMs better, the BeIA effort includes pulling together a number of different parts to make a cohesive whole, letting ODMs with short time-to-market requirements quickly set up a working system.

Programming and Formats

Currently, the lions share of “media” content on the Internet seems to be held by four technologies: MP3 streaming audio, Real Media audio and video, Macromedia Flash animations and Java applets. BeIA provides support for these key technologies out of the box in addition to MIDI, RMF and other low-bandwidth music presentation technologies. Technologies that may become important in the future include Windows Media for streaming audio and video, and QuickTime streaming video[9]. Be is working with licensees to add these technologies to upcoming versions of BeIA. After all, the success to adoption of a format is the wide proliferation of devices capable of receiving the format in the marketplace.

Management and Administration

As new formats become important in the marketplace, it is important that the technology an Internet appliance is built upon can allow simple automated updates, without involving the consumer directly. A consumer would much rather turn on his machine one day and discover that some new wonderful format actually works on his machine than having to download, install and configure an endless row of custom plug-ins. Similarly, an ODM would much rather have control over providing this technology to all its customers, so that he knows that all customers are running the same versions of software and have uniform capabilities.

BeIA clients have the capability to update themselves with securely signed packages coming from the ODM. Additionally, Be builds a server infrastructure to allow ODMs to easily build and manage a customer base. Depending on need, user tracking, customized content and individual programming can also be added to the package. Just like Amazon.com learns what books and CDs you like to purchase, an ODM can provide a customer with added value by learning and adapting to each customers habits when using the device. “No more sucky songs on the Internet radio!”

ACKNOWLEDGEMENTS

This paper would not have been possible without the constructive criticism and hard work of everyone at Be, Incorporated. I want to especially thank Leo Schwab, Jean-Baptiste Quéru, Chris Liscio and Jac Goudsmit for detailed suggestions, as well as Pierre Raynaud-Richard, Dana Marks and Steve Sakoman for guidance and cooperation.

REFERENCES AND ENDNOTES

[1] Sony Corporation; http://www.evilla.com/
[2] http://news.cnet.com/news/0-1006-200-2374345.html
http://news.cnet.com/news/0-1006-200-4388198.html

[3] National Semiconductor;
http://www.nsc.com/appinfo/solutions/
[4] Transmeta Corporation; http://www.transmeta.com/crusoe/
[5] Intel Corporation; http://www.intel.com/celeron/
[6] Julius O Smith III, Jan 2000; The Digital Audio Resampling Home Page; http://www-ccrma.stanford.edu/~jos/resample/
resample.html

[7] Estimated cost of 24-bit 96 kHz stereo audio parts for production quantities based on quotes obtained by the author.

[8] Keynote Systems; http://www.internethealthreport.com/
[9] Jupiter Media Matrix; November 2000 Media Player Usage

� EMBED Word.Document.8 \s ���

� EMBED Word.Document.8 \s ���

� EMBED Word.Document.8 \s ���

� EMBED Word.Document.8 \s ���

� EMBED Word.Document.8 \s ���

� Short for MPEG 1 layer 3 audio encoding.

� The interrupt latency may include the execution time of more than one interrupt handler or critical section in conjunction.

� Among other notable sampling rate converters available in BeIA, a four-point cubic Hermite spline measures at the same noise level as the 17th order windowed sinc interpolator discussed here, but sounds harsher during listening tests.

� A joking reference to a CD whose creation was interrupted because the operating system could not provide data to the CD burner drive in time.

� The BeIA Internet Appliance operating system shares many technology components with the BeOS desktop computing operating system.

� For debugging and development purposes, there are emergency exits from such a situation.

� Purists will note that dithering should be applied to the signal at this point. Currently shipping versions of BeOS/BeIA do not yet do this.

� This slogan is the invention of the author and not a formal marketing statement for Be, Incorporated.

AES 18th INTERNATIONAL CONFERENCE

2

[image: image6.wmf]T

able 2: The Crusoe Reference Platform

Chipset

CPU/North Bridge; ALI

1535 South Bridge

AC

-

97 controller

32 streams; linear SRC

Graphics

SMI LynxEM+ (PCI, On

-

chip Frame Buffer)

Memory Bus

66

-

133 MHz (typ 100 MHz)

CPU

400 MHz CPU w/MMX

Microarchitecture

Code Morphing, VLIW

Cache

96 kB L1

[image: image7.wmf]Table 3: The Celeron Reference Platform

Chipset

CPU; i810e North Bridge;

i801 South Bridge

AC

-

97 controller

Single stream

Graphics

North Bridge

Memory Bus

66

-

133 MHz (typ 100 MHz)

Shared

CPU

600 MHz P6 CPU w/MMX

Microarchitecture

Deep Pipelining, 3

-

way

Superscalar

Cache

32 kB L1; 128 kB L2

[image: image8.wmf]Table 4: BeIA Sample Rate Converters

The CPU cost was measured on a 466 MHz Celeron system. The

17

th

order interpolator makes heavy use of the pipelined f

loating

-

point unit, and its CPU cost will not scale well to a lower

-

cost

platform.

Converter

CPU Cost

Noise Level

0

th

 order

0.2%

-

20 dB

1

st

 order

0.5%

-

40 dB

17

th

 order

1.6%

-

90 dB

[image: image9.wmf]

#include <OS.h>

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

#define ITERS 10000 // number of samples

void main()

{

bigtime_t total = 0, worst = 0;

//

set ourselves up as a low

-

latency thread

set_thread_priority(find_thread(NULL), 120

);

for (int ix=0; ix<ITERS; ix++)

{

//

wake up some time in the future

bigtime_t then = system_time()+10000LL+(rand()&0x7fff);

snooze_until(then, B_SYSTEM_TIMEBASE);

//

compare when we actually woke up to when we wanted to

bigtime_t now = sys

tem_time();

assert(now

-

then >= 0LL);

//

record statistics on accuracy

if (now

-

then > worst) worst = now

-

then;

total += now

-

then;

}

//

report results

printf("max latency: %Ld us; avg latency: %Ld us

\

n", worst, total/ITERS);

}

Listing 1: Measuri

ng Interrupt Latency on BeIA

system_time() and snooze_until(), implemented by the BeIA kernel scheduler, work using

CPU performance timers providing microsecond resolution.

[image: image10.wmf]Table 1: The Geode Reference Platfor

m

Chipset

CPU; North Bridge; South

Bridge

AC

-

97 controller

Single stream

Graphics

North Bridge

Memory Bus

33

-

100 MHz (typ 66 MHz)

Shared

CPU

266 MHz Cyrix CPU

w/MMX

Microarchitecture

Integer Pipeline

Cache

16 kB L1

_1044447816.doc
		Chipset

		CPU/North Bridge; ALI 1535 South Bridge

		AC-97 controller

		32 streams; linear SRC

		Graphics

		SMI LynxEM+ (PCI, On-chip Frame Buffer)

		Memory Bus

		66-133 MHz (typ 100 MHz)

		CPU

		400 MHz CPU w/MMX

		Microarchitecture

		Code Morphing, VLIW

		Cache

		96 kB L1

Table 2: The Crusoe Reference Platform

_1044447856.doc
		Chipset

		CPU; i810e North Bridge; i801 South Bridge

		AC-97 controller

		Single stream

		Graphics

		North Bridge

		Memory Bus

		66-133 MHz (typ 100 MHz) Shared

		CPU

		600 MHz P6 CPU w/MMX

		Microarchitecture

		Deep Pipelining, 3-way Superscalar

		Cache

		32 kB L1; 128 kB L2

Table 3: The Celeron Reference Platform

_1044453379.doc
		Converter

		CPU Cost

		Noise Level

		0th order

		0.2%

		-20 dB

		1st order

		0.5%

		-40 dB

		17th order

		1.6%

		-90 dB

Table 4: BeIA Sample Rate Converters
The CPU cost was measured on a 466 MHz Celeron system. The 17th order interpolator makes heavy use of the pipelined floating-point unit, and its CPU cost will not scale well to a lower-cost platform.

_1044447830.doc
		Chipset

		CPU; North Bridge; South Bridge

		AC-97 controller

		Single stream

		Graphics

		North Bridge

		Memory Bus

		33-100 MHz (typ 66 MHz) Shared

		CPU

		266 MHz Cyrix CPU w/MMX

		Microarchitecture

		Integer Pipeline

		Cache

		16 kB L1

Table 1: The Geode Reference Platform

_1044360303.doc
#include <OS.h>

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

#define ITERS 10000 // number of samples

void main()

{

bigtime_t total = 0, worst = 0;

//
set ourselves up as a low-latency thread

set_thread_priority(find_thread(NULL), 120);

for (int ix=0; ix<ITERS; ix++)

{

//
wake up some time in the future

bigtime_t then = system_time()+10000LL+(rand()&0x7fff);

snooze_until(then, B_SYSTEM_TIMEBASE);

//
compare when we actually woke up to when we wanted to

bigtime_t now = system_time();

assert(now-then >= 0LL);

//
record statistics on accuracy

if (now-then > worst) worst = now-then;

total += now-then;

}

//
report results

printf("max latency: %Ld us; avg latency: %Ld us\n", worst, total/ITERS);

}

Listing 1: Measuring Interrupt Latency on BeIA
system_time() and snooze_until(), implemented by the BeIA kernel scheduler, work using CPU performance timers providing microsecond resolution.

